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Evidence for the Poisson Distribution
for Quasi-Energies In the Quantum
Kicked-Rotator Model

A. Pellegrinotti!
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A transformation on the two-dimensional torus which is related to the problem
of limit distribution for the distance between the levels in the kicked-rotator
model is considered. The first four moments of the r.w. which describe the
numbers of visits of a point in a rectangle of measure ¢ are calculated. It is
shown that when ¢ — 0 they converge to the first four moments of a Poisson r.w.
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SECTION 1

In this note we study a transformation on the torus which is related to the
problem of limit distribution for the distance between the levels in the
kicked-rotator model."

We denote by Tor? the two dimensional torus (which we identify with
the square [0, 1] x [0, 1] after the identification of the opposite sides) and
by dxdy the Lebesgue measure on it.

On Tor? we define the following transformation T

T(x, y)=(x+a,x+ )

where o€ [0, 1] is an irrational number.
It is easy to see that the measure dxdy is T invariant. It is easy to see
also that this transformation is not mixing and has zero entropy.
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We can iterate the transformation and obtain the following formula
(see Ref. (2)).

T(x, y)=(x+noz, y+nx+n(n;1)oc> (1.1)

For every ¢ >0, we define the region

[1={(x, y)eTor: 0<x<10< y<e}

&

and define the random variable
{*(x, y)= {k T (x, y) H0<k< }

(# {-}=cardinality of the set {-}) where ¢ is a positive constant.

Our goal would be to show that {**(x, y) has in the limit as ¢ -0, a
Poisson distribution with parameter ¢. This is apparently a difficult
problem. We make a step towards its solution by evaluating the moments
of {**(x, y) up to the fourth order. These moments depend on « and this
poses further problems. For this reason we consider an averaging
procedure by performing an integration over o. In this way we obtain a
simpler expression for the n moment of the {**(x, y). We will show that the
nmoment, with n<4, converges to the same moment of a Poisson r.w.
with the parameter ¢. For clearness we write the first four moments of the
Poisson distribution r.w. with parameter c¢. They have the form ¢, ¢+ ¢?
c+3ct+c3 e+ T2+ 603+ ¢t

SECTION 2

In this section we derive the explicit formula for the » moment, after
the integration over a.
The object that we want to study is the quantity

j docj j dx dy({*°(x, y))* 2.1

For this purpose we introduce the following variables

1 if T* e]l.0<k<
f]octs(x ) { (’x y) I—_[ C/S (22)
0 otherwise
and obviously
((x, y)= ) &r(x, ») (2.3)

0 k<c/e
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We denote
' (x, ¥y =Eo(x, )
Now we prove the following.

Proposition 1.1.

(2.1) =

i
3]

Y ) T1 Atem,) (2.4)

kisenkn My, iy j=1

O kj<cle my+rmp+ - =0
miki+ - +mky=0
mlk%—% ~~+m,,k3=0

where

exp(2nit) —1
h(1)= p(2nit)

Proof. Taking the Fourier series for the function {#¢ and using the
invariance of the Lebesgue measure on Tor? we obtain

&x, )= ) exp[2mi(m,x+m,y)]
1
myl—m =0

X eXp [2m'<mlla—m2 lU;”):'eh(—smz) (2.5)

Now (2.1) can be written as (we omit in the sum the condition 0 <k, < c/e)

Y[ [avay gt n g )

Ky pekn 0

= 3 [ an| [ dedyeiixop) )G )
. 0 -0

-y ¥ jol dx

kiyenkn M, MY, M ]
my(ky —ky) —my =0
malks —k1)—m3=0

g a(kn — ki) — rga_3 =0

X exp [Zm' (ml(kz—kl)‘m2

(ky—Fk)ky—k, + 1)) }
> o
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(kz—k1)(];3'“k1+1)+

(ky—k )k, — ki + 1)) a}

X eXp [Zni <m3(k3 —k)—my

+ My (k= ki) =My, 3

1 rl
XL L dx dy exp[2ni(m; +ms+ - +my, 4y 1) X

+ 2mi(m, +my+ - +m2(n~1))y
x &5(x, )’)Sn_lh(—gmz)"'h(“gmz(n-l))
= Z Z Bnh("gmz}"'
S MYy MY —1)
my+my+ o Hmyp-1)-1=0

malky +k1)—m=0
mag(ks — ki) —m3=0

magn—1)(kn — k1) — mam—-1)—1=0

my(ky —ky) —my (ka—ky) (kg —ki+1)/2+ ---
+ myn—1)—1{kn— k1) — mo(n— 1y(kn— ki) (ky— k14 1)/2=0

X h(—emy, 1)) h(e(my +my+ -+ +my, 1))

From the last formula taking m)= —my,---, m,= —m,,_,, and m, =
my+my+ .-+ +my, ) and changing the order of ks we obtain (2.4).

SECTION 3

In this section we evaluate the n moment for n < 4.

The first moment is easily evaluated via the invariance of the measure
and is equal to c.

The second one is given by

Y y e*h(em,) h(em,)
ky.ka my,my
Oski<c/e m+m=0
myki+myky=0
mlkf +m2k%=0

=c’+e Yy &y

O0<k<cle m#0

exp(2niem) — 1 exp — 2migm — 1

2miem —2miem

_ (1 —cos(2mem))
=c’+ce Yy 2 S

m#0
o, sin?(2mem/2)?
=t L =gy

m#0



Evidence for the Poisson Distribution 131

the last sum in the limit ¢ > 0 converges to the integral

L= sin®(x/2) 1= sin’(x) ,
—zﬂ_m—————(x/z)z x—-;Lw o de=1 (3.1)

So we get for the second moment ¢? + c.
The third moment is equal to

Y Y e*h(em,) h(em,) h(ems)
Ky, kg, k3 my,my,m3
O ki<cle mi+m+my=0
myky+ poky+ miky=0
mlk%+ m2k§+m3k§:0

=g Y +3 Y Y h(em,) h(em,)
ki. ko k3 ky.koy ks my,my
O k;<c/e 0 ki< cfe m +my=0,mk;+myk;=0
mlk%+mzk%=0
+e ¥ ) h(em,) h(ems) h(em,) (32)
ki, k2, k3 my.my,m3
O< ki< c/e m;#0

mi+my+m3=0
miky +myky+ m3ky=0
myk? + myks + myki =0

The first and the second terms in the r.h.s. of (3.2) are evaluated as before.
The first gives ¢® while the limit of the second one is equal to 3¢
The third one is equal to

ey Y. h(em,) h(emy) h(—e(m, + m,)) (3.3)

O0<k<c/e mp,mm
(3.3) follows from the fact that the only solution of the system
ml + m2 + m3 = 0
mlkl + m2k2 + m3k3 = 0
m k% +myk3+myki=0

is ky=k,=k,. This easily can be obtained by direct computations. Now
(3.3) becomes

ce® Y

my,my

sin(2nem, ) + sin(2nem, ) — sin(2ne(m, + m,})

2nem, 2nem, 2ne(m, + m,)

and in the limit ¢ - 0 we obtain

sin x +sin y —sin(x + y)
xy(x+y)

1
cﬁsz dx dy
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where the integral is equal to 277, and so we obtain the result for the third
moment.
For the fourth moment we obtain from (2.4)

ety Y h(em;) h(em,) h(ems) h(em,)

ki.ky,k3,ka mi.my, my,my
O<ki<cle S mi=0,T mki=0,3 mk?=0

o 3 a3 )

ki,ky,k3,kq ki,ky, k3 my,my,m3
0 ki<c/e 0k <cle m;#0
S =0, % mik;=0, ¥ mk; =0

re (2 5T e b))

ki, k2 my,
0<k;<c/e m;#0
mp+my=0

myky+npky=0
my kS + makh =0

+et ) )) h(em, ) h(emy) h(ems) h(em,)
ki, ky k3, ks my,my,m3,my
0<ki<cfe m;# 0 (34)

3 mp=0, X mik;=0, ¥ mik] =0

From what we have seen above it is clear that the problem is to calculate
only the last term in the r.h.s. of (3.4). In order to do this we have to study
the diophantine equations

4 4 4
Y om=0, Y mk,=0, > mk?=0 (3.5)
i=1 i=1 i=1
in the variables k,, k,, k5, k,. Now from (3.5) we obtain the system

{mlkl ‘+‘m2k2+m3k3 = (ml +m2 +m3)k4
mk? 4+ myk3 +myki=(m;+m,+ms) kj

Denoting

ay=(m;+my+ms)k,
and

ay=(m, +m,+ms3) k3
we want to solve the system

m1k1 +m2k2 +m3k3 =
mik}+myk2+miki=a,

(3.6)
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From the first equation of the system (3.6) we can find k, and using the
second one we get
(@, —mk, —m2k2)2

m k3 +myk3 +ms 3 =da,
3

After simple calculations we obtain the following quadratic form in k, and
k2.

m(my, + m,) k2 +my(m, + my) k3 + 2m myk k,—2a,mk,
—2a,myk,+ a3 —mya,=0 (3.7)

We shall use the classical Gauss™ theory of integer quadratic forms.®
We are interested in integer solutions of (3.7). For this reason we must
study the determinant of (3.7). It is equal to

m(m; + ms) mym; —am
4= mym, my(my+msy)  —a;m,
—a,m, —a,m, at—~msa

=mmym3(ai — (m, + my+ms3)a,)=0

Introducing the quantities

mym, —da;m,
—] = =a1mlm2m3 (3.83)
my(m,+my)  —aym,
mym+m —am
e —|mlmitms) YN =g mymym, (3.8b)
mym, —ayh,
my(m;+m mm
_d=1 1( ! 3) ! 2 =m1m2m3(m1+m2+m3) (38C)
myn, my(m, + m;)

and making the change of variables

x=dk,—f y=dk,—e
we obtain

my(my + ms) x* +2m, myxy + my(my +my) y* =0 (3.9)

(3.9) can be written in general (i.e. m, +m;# 0 or m, + m, #0, the cases in
which they can be zero will treated below) as

(x_—mlmz—f-\/;y)(x_—mlmz‘\/‘}y>=o (310)

my(m; + msy) my(my +m,)
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Now if d> 0 but is not a square number or 4 <0 we have only one integer
solution of (3.10): x = y=0. Coming back to the ks variables we have

and recalling the definition of /' and ¢ we have &, =k,. Now we can easily
see that

—a;m;m,ni;
klz =k4

—mymymy(m; +m, + m;)

and from the last equality it follows k, =k, =k, =%k,. So the contribution
of this term is equal to

ety Y h(em,) h(emy) h(ems) h(em,) (3.11)
Oskk< c/e ml’rrnnfgn()zym4
>m=0

Now we must analyse the case when & is a square. This can happen
only in the following five cases: m;= —m,, m, = —m3, Mmy= —m;,
M= —My=my, M, = —M3=M,.

The typical situation for the first three cases is

ety y h(em,) h(—em,) h(emy) h(—em,) (3.12)
0Lk i —mmam -

my(ky — k3) + mo(ky —kg) =0
mi(k} — k3) + my(kl — k3) =0

In order to evaluate (3.12) we must solve the system of equations

{ml(kl—k3)+mz(kz-k4)=0 (3.13)

my (k3 —k3)+my(k3—k3) =0

There are two solutions of the sysem (3.13): one is k, =k, and k, = k;, the
other is

Wy —ny 2m2
k1= 3 4
my + m, nty + nt,
) (3.14)
m My —m
k= 1 2 1 )

= k3
my;+m, my+m,
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We are interested only in integer positive solutions of (3.14). Because
of this we must take m, and m, of the following kind

my=(1—p)rmy=(1+p)r

where p# —1,0, 1, r #0 are integer numbers.
In this way (3.14) becomes

ki=—pky;+(1+p)k,
ky=(1—p)k;+ pky

From (3.12) we have that the contribution of this case is given by

DY 2 h(e(1 — p)r)
ki,ka. k3, ka pr
O<gki<cfe p#F —1,01r#0

ky= —pk3+ (1+ p)ka,kr=(1— pYks+ pky

x h(e(1 = p) r) h(—e(1 = p)r) h(e(1 + p) r) h(—&(1 + p) 1)

1/2¢1 1/2 1/2 12
sin? (27rs (12 p)e r> in? <27za (1;—1))8 r>

0<ki<cle 7 P

2
S @ k;;‘q 8% <2n81/2(1 ~p) al/zr)2 <27t81/2(1 +p) 81/2r>2

and the quantity inside the modulus, as ¢ —» 0 goes to

This shows that this contribution tends to zero, so that the only
contribution to (3.12) is from k, =k, k,=k,. Obviously we have only
three such cases. The other two cases where d is a square ie.
M= —My=My= —M,, M; = —M;=m,= ~—m, give a zero contribution
too, as it is easy to see.

The final formula, in which we omit the terms that do not contribute
in the limit as ¢ >0, is
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Lhs. of (3.4)

=gt ) +4c<g3 Y Y h(aml)h(amz)h(am3)>

ki, k2, ks, ke ki, ka, k3 my,my, m3
0<ky<c/e O<ki<cle ¥ m=0,% miki=0, % mik?=0

+ 6¢2 (82 Y Y. h(em,) h(em2)>
\ ki.k2 my,my
O0<k;<c/e mi#0
my+my =0, mpky+myk,=0
mlkf+m2k§=0

+e* Y Y h(emy) h(emy) h(ems) h(em,)
Oskk< c/e ml”:f;:ng’m

>mi=0

+3* ) Yy h(em,) h(—em,) h(emy) h( —em,) + O(e)
kS im0 (3.15)
mp= —m3,my= —nmy
In the limit the r.h.s. of (3.15) is equal to
c4+4c2+6c3+3cz+c—1—3
47
cos(x+ y+z)—cos(x+ y)—cos(x +z2)
Xj < ——cos(y+z)+,cosx+cosy+cosz~—1>
R} xyz(x+y+z)
The integral in the last formula is equal to 4n> and so we obtain the
result.

dx dy dz

Remark. 1t is possible to calculate the first and the second moment
without integrating on a, and the result is the same.
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